A K-Means and Naive Bayes learning approach for better intrusion detection

ثبت نشده
چکیده

Intrusion Detection Systems (IDS) have become an important building block of any sound defense network infrastructure. Malicious attacks have brought more adverse impacts on the networks than before, increasing the need for an effective approach to detect and identify such attacks more effectively. In this study two learning approaches, K-Means Clustering and Naïve Bayes classifier (KMNB) are used to perform intrusion detection. K-Means is used to identify groups of samples that behave similarly and dissimilarly such as malicious and nonmalicious activity in the first stage while Naive Bayes is used in the second stage to classify all data into correct class category. Experiments were performed with KDD Cup '99 data sets. The experimental results show that KMNB significantly improved and increased the accuracy, detection rate and false alarm of single Naïve Bayes classifier up to 99.6, 99.8 and 0.5%. Keyword: Intrusion detection system; K-Means clustering; Naive Bayes classifier; Accuracy; Detection rate; False alarm

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrusion Detection based on a Novel Hybrid Learning Approach

Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

Optimized Intrusion Detection by CACC Discretization Via Naïve Bayes and K-Means Clustering

Network Intrusion Detection System (IDS), as the main security defending technique, is second guard for a network after firewall. Data mining technology is applied to the network intrusion detection, and Precision of the detection will be improved by the superiority of data mining. For IDS many machine learning approaches are ad-acute but they all work efficiently on basis of the training data ...

متن کامل

Anomaly Based Network Intrusion Detection by using Data Mining

As network attacks have increased in number and severity over the past few years, intrusion detection system (IDS) is increasingly becoming a critical component to secure the network. Due to large volumes of security audit data as well as complex and dynamic properties of intrusion behaviors, optimizing performance of IDS becomes an important open problem that is receiving more and more attenti...

متن کامل

Improving the Attack Detection Rate in Network Intrusion Detection using Adaboost Algorithm

Problem statement: Nowadays, the Internet plays an important role in communication between people. To ensure a secure communication between two parties, we need a security system to detect the attacks very effectively. Network intrusion detection serves as a major system to work with other security system to protect the computer networks. Approach: In this article, an Adaboost algorithm for net...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015